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Abstract 

The exact sampling theory pertaining to the problem of estimat- 

ing the mean lifetime of a particle, when the data sample contains 

contributions from several background sources. is developed in detail. 

Measurement errors are taken into account: on an event by event ba- 

sis, by assuming the experimental resolution function to be a Gaussian 

distribution of known variance and zero mean. \Vhile the results pre- 

sented are valid for samples of any size they are more suited to the 

analysis of data samples containing few events. In this sense thev 

offer a method of analysis which is complementary to the method of 

maximum likelihood. 
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1 Introduction 

We have witnessed, in the past few years, a resurgence of interest in the 

measurement of the mean lifetimes of particles. This is due, in part, to 

the relatively recent availability of high precision vertex detectors, and, in 

large measure, to the recognition that these measurements provide a valuable 

means of testing certain aspects of the standard model. 

It is well-known that a weighted sum of unbiased lifetime measurements 

provides an unbiased estimate of the mean lifetime. A method of calculating 

exact confidence intervals for this sum was presented in a recent paper [l]. 

Those results apply when the background level is negligible. In general, hon- 

ever, a sample of measurements will contain contributions from background 

events which must be accounted for in order to ensure that the estimate of 

the mean lifetime is free from background induced bias. The usual method 

of analysis is that of maximum likelihood. (See, for example, Ref. i2].) It 

should be emphasized. however. that a rigorous basis for its use exists only 

for samples which are %ufficient.ly large” :3:. There are, and will continue 

to be. instances in which, because of the nature of the decay channel being 

measured. the data samples obtained will contain very few events; then there 

is no guarantee that the method of maximum likelihood is optimal: lifetime 

estimates will. in general, be biased and “standard error” intervals will not 

necessarily be standard. that is: have probability content equal to 0.683. 

Moreover. it is common practice to form “world” averages of estimates 

from different experiments. Clearly. that task is made easier by having esti- 
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mates with as little bias as possible, and having “errors’! whose interpreta- 

tion is statistically unambiguous. Therefore, if a rigorous unbiased method 

of analysis exists for a particular problem, at the very least, that method 

ought to be explored even if, as is ordinarily the case, the variance of an 

unbiased estimate is- larger than that of one which is biased. The purpose 

of this paper is to present such an analysis using well-accepted methods of 

mathematical statistics. It is hoped, that the formulas presented here offer 

a practical solution to the estimation of particle lifetimes in the presence of 

background, and in particular when an analysis must be based on very few 

events. 

In Sec. 2 the sampling theory for the problem is presented and in Sec. 3 

we show how the results are to be used in practice. Concluding remarks are 

made in Sec. 4. 

2 Theory 

2.1 The general case 

In the notation of Ref. ill 

t = 5 c,t,, (1) 
“=I 

is the weighted ayerage of A’ lifetime measurements: with xr==, c, = 1. The 

experimental procedure leading to the sample {tn} will be unbiased if the 

mean values < t, > are linearly related to the mean lifetime to be estimated. 

In this case. a suitable linear function of the estimator in Eq. (1) will yield 
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unbiased estimates of the mean lifetime. The estimator 1 is very simple; the 

whole difficulty lies in calculating the associated “errors”. To do so we need 

the probability density function (PDF) of t. It is given by 

P(flr) = $11 PF(W)du, 

where 

F(w) = ncl /p, e-‘““~“P(t,)dt,. 

The function P(t,) describes the parent population from which the singular 

sample t, is drawn; P(1,) will be a weighted sum of the PDF’s for the 

signal and the various sources of background. If there are M different sub- 

populations contributing to the parent popula,tion we can write 

P(L) = 5 fmP(&iL): (4) 

with 
4, 

Z1fm = 1. (9 

and where f,,, is the weight of sub-population m and r,,, is the corresponding 

mean lifetime. or a linear function thereofl the functions p(f,,~,,,) are the 

normalized densities which describe the sub-populations. The JI weights 

and the AI - 1 mean lifetimes of the background sub-populations are as- 

sumed known. (Usually, these parameters are knots-n with some uncertainty, 

in which case their rariation within reasonable bounds will determine the 

sysfemalic uncertainty in the estimate.) \!‘e shall suppose that the mean 

lifetime to be estimated is 7 E T,. 



In the absence of measurement errors: each term in P(t,) is a pure expo- 

nential. However, in experiments for which the results given here are most 

useful, namely colliding beam experiments, the measurement errors usually 

cannot be neglected; P(t,) should then be smeared out by the experimental 

resolution function. We shall take this function to be a Gaussian distribution 

of zero mean and known variance oz. When smeared, each term in P(t,) 

assumes the form 141 

p(tnITn) = $- exp (c$JZr$) exp 
m 

( -t*/~~)erfc(un~~l~u~ltn), (6) 

where erfc(z) is the complementary err ‘or function: 

erfc(r) = ?- /- e-Y’dy, 
J;;= 

Note, that by allowing o to depend on n we are allowing for the possibility 

that the resolution function depends on the nature of the event; ideally, the 

resolution function would be event independent. 

Substituting Eq. (4) into Eq. (3) yields 

J-(&J) = jl g fm /_I e-‘C”L”-iP(tn~Tm)&,, 
which, upon performing the integrals. using the result 

(i) 

I 
’ 

-3E 
e--erfc ( crb $-I;) dz = ~e.w,z-.t.~erfc (gb - c>- .-It) 

- ic-“‘erfc ( ob 2-r’) ? (8) 

becomes 

F(d) = E(d)G(w). (9) 
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where 

and 

a, s -. 
GTm 

The PDF, P(~‘T): can be expressed as the convolution 

P(t!r) = /,- e(r)g(t - r)dz, 

of the functions 

e(t) = &/p, e”*E(~)dw, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

and 

9(t) = ; 11 eiufG(~)&. 

e-l’/2v’ 
zz 

u&G’ 
(16) 

\Ye observe that. in general. no two of the matrix elements on,,, will hare 

precisely the same value whence the function E(Y), regarded as a function 

of a complex variable. will have simple poles at w = in,,,,; Eq. (15) can 

therefore be readily evaluated by contour integration. The result is 

N nr 
E(t) = C C E-“‘~La~jll;j. 

L=,j=, 
(17 
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where we have defined: 

)p-kjEfjfi C( anmfm 
n#km=l =n, - akj)’ 

(18) 

We note that the function e(t) is just the PDF of t when there are no 

measurement errors. From this function one can derive the interesting iden- 

tities 

N M N A’ 

2 2 a;jlfkj = b’(-l)N+’ n C akjfj, R > 0, 
k=1 j=1 

N 8V 

zEIL1.kj = l 1 

(1-6kn)fj.fm_~~f, (19) 

~kj’hm k=l j=1 dj ’ 

which are a generalization of the those given in Ref. il]. .A proof of the first 

identity is presented in Appendix A; the other three follow most readily from 

the moments of e(l) 

\\‘e now complete our derivation of the densities pertaining to the esti- 

mator t. From Eq. (14) we obtain 

and 

Skj f -0kjf 7 oza:j/2, 

aokj - a-‘! 

(21) 

(22) 



The cumulative distribution function (CDF), C(t:T), is defined by 

c(tlT) = Jt P(r~r)dz. 
--DD (23) 

Applying Eq. (8) to the above yields: 

c(t;T) = 1 - ierr& 
ad5 

- i 5 $J e'\"'e*fC(ljj)H'kj. (24) 
k=1 j=1 

Finally, the moment generating function (MGF). M(3): defined by 

(25) 

can be expressed as: 

The moments M,, we find: 

(27) 

where ;nj2: stands for the integer part of n/2. In particular. the first two 

moments .V, =< 1 > and .lf? E< 1’ > of P(1 7) are: 

(28) 

and 



By definition, the variance of P(tlr) is V[t] = < t2 > - < L >‘; therefore, 

\‘[t] = 5 +‘[tk;, 

k=1 
(30) 

with 

V[tk~ = U: + 2 ~ fj~,‘- < 1 >’ (31) 
j=1 

2.2 Special cases 

r 
Hitherto, we have made no assumptions regarding the tiagnitude of the mean 

lifetimes of the background sub-populations. However. in many experiments 

the background is principally from particles with mean lifetimes very much 

shorter than the lifetime being measured. Let us suppose that this source 

of background corresponds to sub-population Af and is characterized, to a 

good approximation. by setting 7~1 = 0. To analyze this case it is convenient 

t0 express lf’kj a5 

ckfj 
*, 

fm ~ - 
Ck - cll 

CkTj x 
mu, $7, - C i- (32) 

nm 

\\‘e observe that in P(t!r) and C(l;r) th f e unctions exp(-~kAf)erfc(l&) go t0 

zero exponentialIF as Q, -+ 0; therefore. we need only consider terms with 

j -c Al, hence 

Kkj = f, fi ckfj 

AI-I 

~ - f,,, - CL?; 1 fm 

nfk ck - c, ",+, CkTj - GTrn 
(33) 

For the simple: but important. case in which all background sources are 

due to short-lived particles .If = 2 and: thgrefore. only the first two terms 

within the parentheses will remain in Eq. (33). while the expressions for the 
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PDF and the CDF will contain only the sum over k; for example, writing 

‘=k = ok, = (CkT)-‘, and letting f be the background fraction, the CDF 

would be: 

C(h) = 1 - herfc(4) 
ua 

- -L'+--2a:/2erfc( 

x fii(l-f)E*+fj. 

n#k’ ck - c, 

The other special case we shall consider is that in M-hich the weights ck 

are all equal. Equal weights would be appropriate when the variances of the 

individual measurements are of equal, or very similar, magnitude. Below we 

derire an expression for C(tiT) by taking the limit of Eq. (24) as ck + l/N. 

Let us write 

akj = (1 + ‘k)xj (35) 

where Xj = .Yjr, and the Q are numbers in the neighborhood of zero. It is 

convenient to define the quantities 

-y. 1 E -&t - ,gXZ;~2 3 2, . 
1; E (UXj - a-‘t)fYJ5. 

2, s. uxj;fi, 

in terms of which Sk, and I& may be written as 

(36) 

(37) 

(38) 

and 

}*j = 1; Y fkzj. 
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We now expand the function 

exhJ erfc( Ykj) ${;j 

in powers of Q. The result is 

= = erff;:‘!“’ $ (i) (215)‘-’ (CkZj)n+‘+i it’kj, 

where 

(39) 

erfc(‘)(z) 5 erfc(r), 

erf@(z) = &e*fc(z), 

= ~(-l)ne-z’H,-I(z), 

and H,,(r) are the Hermite polynomials i5]. 

Let us write Eq. (39) in terms of the new index P = n -C 1 Y i. The 

condition i 1 0 2 max’l- = P - n: the condition i 5 I 3 minil] = integer 

part of (r - n - 1)/z, \vhile the bounds on I q II 5 P. \Vith these bounds 

on 1 we recognise the sum over 1 to be proportional to a modified Hermite 

polynomial. h,(r) I i-“H,(iz); in fact. the sum equals h,-,(li)/(r - n)!. 

Equation (39) then becomes: 

eay, 5 (-tkirlI-k, 

r=O *! 
erfc’“‘(l;)h,-,(1;). (-10) 

Consider the sum over k of the expression in Eq. (10): the only term 

which depends on ck is the sum: 

.v 
1 .. ,* E ~(k~k)'l~~kj 
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= &k~~ “ek & ! 

n 

X fj fi[fj + Cnfj + (61 - tk) 5 ,“:“” :. 

- Qkj’ n2k m+3 

In view of the identity 

(41) 

&kyik ;’ = hN-I, l-<N-l, 

which is a special case of the first identity listed in Eq. (19): the sum t;, 

involves subtle cancellations, consequently, the limit ck + 0 must be analyzed 

with some care. This analysis is presented in Appendix B, together with 

the general result for l,B. Note, also, that the sum in Eq. (42) is U(L) for 

T > N - 1 which implies that, for these values of +, l& -+ 0 as cn + 0. 

Finally, collecting together all the pieces: we arrive at the expression 

C(f;r) = 1 - $rfc(f) 
uv+ 

_ ;$, yQ+,, Jg (1) erfc(n)(l>)hl-n(l>). 
,=I r=o T! 

(43) 

for the CDF in the limit of equal weights. that is. for the estimator: 

1 = ; $ t,. 

n-1 

It is worth remarking that a slight generalisation of Eq. (43) can also be 

used to calculate C(t ,:) when the c, are not necessarily close to zero. In this 

case the sum over r would extend to infinity and the coefficients l;, would 

have to be calculated using Eq. (41). Owing to the rapid increase in the 
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magnitude of wkj with sample size, it might be easier to calculate C(tjr) 

using the expanded form in lieu of the closed expression given in Eq. (24). 

3 Application to lifetime measurements 

The estimator t yields an unbiased estimate of < t >, the mean of the density 

P(tlr); we want, however, an unbiased estimate of T. A suitable estimator, 

t’, follows immediately from Eq. (28): namely? 

1’ = (t - 5 fjTj)lfi> 

j=2 

which is evidently an unbiased estimator for T z TV. The variance pertaining 

to t’ is 

\‘[f’] = vjt]/f:. (45) 

As noted in Ref. il]: a complete estimate of the mean lifetime should 

specify both an estimate of the variance: which is needed to compute world 

averages, and a confidence interval (which by convention is normally a central 

interval at 68.3 %, confidence level). Exact (central) confidence intervals 

~~(t’).~(t’): can be obtained from the equations 

c(t(q’) = (1 - r7)/2, (46) 

C(L(i’)iT) = (1 + P)/2, (47) 

*here here ,9 is the desired level of confidence. The above equations can 

be solved by a straightforward application of the Newton-Raphson method. 

The intervals so obtained are exact in the sense that the statement Prob(t’ E 

,7-(f’),T(f’)~) = 3 is exactly true. 
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We turn now to the construction of an unbiased estimator for the variance. 

To this end we could try to generalize the estimator given previously [l]; 

however, here we shall proceed somewhat differently. It is evident that t2 

yields an unbiased estimate of < tZ >, therefore, if we can find an unbiased 

estimator for < t >* our problem is solved. In fact such an estimator can 

always be found for all samples with N 1 2. 

Consider the double sum 

iE AmCkGJk~“. 
The coeficients Ak,, must be chosen so that the expectation value of the 

above is equal to < t >‘. We note that for k # n tk and t, are indepen- 

dent; therefore. in this case < tkt, >=< tk >< t, > which is just < f >2. 

The terms with k = n must be excluded in order to exclude contributions 

from the second moment; hence. .4nm x I - 6k,. Finally: the constant of 

proportionality must be chosen so that the coefficient of < t >’ is unity. 

Therefore. 

\“t’ = p _ x?z’=, x:=1(1 - ~kn)CkCdkfn~ 

lx,“=, I;=,(1 - L.)CG” 
(48) 

provides an unbiased estimate of the variance oft and therefore of 1’. 

Ideally: the weights ch should be set cx l!\‘~t~~ this being the optimal 

choice in that it minimizes the variance oft. In practice the terms in i’[tkj 

involving the unknown parameters r: and < t >’ will either have to be 

replaced with estimates or simply dropped altogether. 
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4 Conclusions 

If we have an unbiased sample of lifetime measurements (in the sense defined 

in Sec. Z), and perhaps containing contributions from background events, a 

linear function of the weighted average of these measurements is the simplest 

unbiased estimate of the mean lifetime. The results presented herein offer a 

rigorous alternative to lifetime analyses baaed on the principle of maximum 

likelihood. We have shown how in principle, for any sample size, enact con- 

fidence intervals and an unbiased estimate of the variance can be calculated, 

provided that the background contributions are known in the mean. It may, 

however, become increasingly difficult to calculate C(tlr) with sutllcient pre- 

cision as the sample size increases. This is because of the rapid increase in 

the magnitude of W&j with N. Therefore, insofar an the method developed 

here can be applied more easily to (arbitrarily) small samples than to large 

ones it may be regarded as being complementary to the method of maximum 

likelihood, which is known to be satisfactory for large samples. 
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6 Appendix: A 

Consider the function 

dbJ3 = &ll eiw+~, ;(w -y;y+-Ya nm p, 

= e -6 g ‘$ e?‘j’t+~‘kj 

= -e e6,zo s $ ~(-‘%)nt”l*j. 

(49) 

where b is any positive real number. Note, e(t) = g(t,O). Changing to the 

variable z = wt in Eq. (49) yields 

g(t, Q = : 1: eiz fil g1 qz -:;:I;hnmf)d~. (51) 

\Ve seek the limit of g(t,E) as t + 0 with 6 held fixed. (A non-zero value 

of S serves merely to avoid a pole on the real axis, thereby simplifying the 

calculation). The product term in Eq. (51) can be expressed as 

1 
fi 5 o,,f, (1 -%)-I. 

i”(2 - i6).v n=lm=l 

which in the limit t - 0 becomes 

iS(- : iq,v lri~l QyJm - O(f) 

Therefore. in this limit g(l,S) reduces to 

g(t.6) = (fi -f i&,~J_, ;“(;y=ir)Td- 
n=* m=, 

= ,);y)!e-~ fi 5 a,,f, 7 O(P). (52) 
“=I m=, 

A comparison of coefficients in Eqs. (50) and (52) leads to the first identity 

in Eq. (19). 
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7 Appendix: B 

The f,-dependent term in Eq. (41) can be written in the equivalent form: 

&j,lfj + 4; + ten - Qlgj a~~~f~,jl. 

Let D(q) be the qth derivative of the product term with respect to -CL, 

evaluated at tlr = 0; then, Eq. (53) can be expressed as: 

rhencel 

1 ir;;z $hdi 
= g(4gjz 

I;, = pgl y(-ci).+i fi 1. 
+& 6, - fk 

(54) 

(55) 

\Ve first observe that the derivatives, although they depend on E,, are 

independent of the index k: therefore. they can be brought outside the sum- 

mation sign in Eq. (55) in which case, in accordance with Eq. (42). 

,., - 
A-1-r D(‘) 

17 - c 7’ P < .v - 1. 
p=o Q 

(56) 

Forr>.~~-1,15,~Oasr,--0. 

Secondly, we note that the product term in Eq. (53) can be written as 

two terms: one is 3~ TX- f -n-1 n: while the other is a function of -ti only: but 

since. ultimately. t, + 0. the derivatives will be determined solely by the 

latter term, which is: 
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A recursive application of Leibniz’ theorem to the above yields: 

D(P) 
7=x A,.4,....4iN, 

t’s1 

where 

(58) 

A, = (59) 

and where the sum is over all N-part compositions of q, that is, over the 

ordered set of indices: {[lrl~T... : I; > 0; I:‘=, 1; = q}. A practical realisation 

of this sum is: 

. . . 1~ -%.--IA,, 
lPLI=3 

where. 

(‘3’) 

lh. = q - I, - lp.. - I&,. 

See. also. Ref. ~61 for a simple algorithm for generating compositions. 
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